Search results for "periodic boundary conditions"

showing 10 items of 56 documents

Finite Size Effects in Thin Film Simulations

2003

Phase transitions in thin films are discussed, with an emphasis on Ising-type systems (liquid-gas transition in slit-like pores, unmixing transition in thin films, orderdisorder transitions on thin magnetic films, etc.) The typical simulation geometry then is a L xL x D system, where at the low confining L x L surfaces appropriate boundary “fields” are applied, while in the lateral directions periodic boundary conditions are used. In the z-direction normal to the film, the order parameter always is inhomogeneous, due to the boundary “fields” at the confining surfaces. When one varies the temperature T from the region of the bulk disordered phase to a temperature below the critical temperatu…

BinodalPhase transitionMaterials scienceCapillary condensationCondensed matter physicsPhase (matter)Periodic boundary conditionsBoundary (topology)Symmetry breakingThin film
researchProduct

A logarithmic fourth-order parabolic equation and related logarithmic Sobolev inequalities

2006

A logarithmic fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions and some regularity results are shown. Furthermore, we prove that the solution converges exponentially fast to its mean value in the ``entropy norm'' and in the Fisher information, using a new optimal logarithmic Sobolev inequality for higher derivatives. In particular, the rate is independent of the solution and the constant depends only on the initial value of the entropy.

Cauchy problemLogarithmApplied MathematicsGeneral Mathematics35B40Mathematical analysisNon-equilibrium thermodynamicsPoincaré inequalitySobolev inequalityNonlinear systemsymbols.namesake35K3535K55symbolsPeriodic boundary conditionsUniquenessMathematicsCommunications in Mathematical Sciences
researchProduct

Wedge filling and interface delocalization in finite Ising lattices with antisymmetric surface fields

2003

Theoretical predictions by Parry et al. for wetting phenomena in a wedge geometry are tested by Monte Carlo simulations. Simple cubic $L\ifmmode\times\else\texttimes\fi{}L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ Ising lattices with nearest neighbor ferromagnetic exchange and four free $L\ifmmode\times\else\texttimes\fi{}{L}_{y}$ surfaces, at which antisymmetric surface fields $\ifmmode\pm\else\textpm\fi{}{H}_{s}$ act, are studied for a wide range of linear dimensions $(4l~Ll~320,30l~{L}_{y}l~1000),$ in an attempt to clarify finite size effects on the wedge filling transition in this ``double-wedge'' geometry. Interpreting the Ising model as a lattice gas, the problem is equivalent to a li…

CombinatoricsMagnetizationCondensed matter physicsFerromagnetismTransition temperatureLattice (order)Periodic boundary conditionsIsing modelInverse functionCubic crystal systemMathematicsPhysical Review E
researchProduct

Theoretical Foundations of the Monte Carlo Method and Its Applications in Statistical Physics

2002

In this chapter we first introduce the basic concepts of Monte Carlo sampling, give some details on how Monte Carlo programs need to be organized, and then proceed to the interpretation and analysis of Monte Carlo results.

Computer scienceMonte Carlo methodThermodynamic limitPeriodic boundary conditionsMonte Carlo method in statistical physicsIsing modelStatistical physicsImportance samplingMonte Carlo molecular modelingInterpretation (model theory)
researchProduct

Graphene nanoribbons subject to gentle bends

2012

Since graphene nanoribbons are thin and flimsy, they need support. Support gives firm ground for applications, and adhesion holds ribbons flat, although not necessarily straight: ribbons with high aspect ratio are prone to bend. The effects of bending on ribbons' electronic properties, however, are unknown. Therefore, this article examines the electromechanics of planar and gently bent graphene nanoribbons. Simulations with density-functional tight-binding and revised periodic boundary conditions show that gentle bends in armchair ribbons can cause significant widening or narrowing of energy gaps. Moreover, in zigzag ribbons sizeable energy gaps can be opened due to axial symmetry breaking,…

Condensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Condensed matter physicsBent molecular geometryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesNanotechnologyBendingCondensed Matter PhysicsAspect ratio (image)Electronic Optical and Magnetic MaterialsPlanarZigzagMesoscale and Nanoscale Physics (cond-mat.mes-hall)Periodic boundary conditionsAxial symmetryGraphene nanoribbonsPhysical Review B
researchProduct

Orthorhombic Phase of Crystalline Polyethylene: A Monte Carlo Study

1996

In this paper we present a classical Monte Carlo simulation of the orthorhombic phase of crystalline polyethylene, using an explicit atom force field with unconstrained bond lengths and angles and periodic boundary conditions. We used a recently developed algorithm which apart from standard Metropolis local moves employs also global moves consisting of displacements of the center of mass of the whole chains in all three spatial directions as well as rotations of the chains around an axis parallel to the crystallographic c-direction. Our simulations are performed in the NpT ensemble, at zero pressure, and extend over the whole range of temperatures in which the orthorhombic phase is experime…

Condensed Matter - Materials ScienceMaterials scienceMonte Carlo methodGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMolecular physicsForce field (chemistry)Thermal expansionBond lengthLattice (order)AtomPeriodic boundary conditionsOrthorhombic crystal systemPhysical and Theoretical Chemistry
researchProduct

Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory

2009

While for a slightly supersaturated vapor the free energy barrier ΔF(hom)(*), which needs to be overcome in a homogeneous nucleation event, may be extremely large, nucleation is typically much easier at the walls of the container in which the vapor is located. While no nucleation barrier exists if the walls are wet, for incomplete wetting of the walls, described via a nonzero contact angle Θ, classical theory predicts that nucleation happens through sphere-cap-shaped droplets attracted to the wall, and their formation energy is ΔF(het)(*) = ΔF(hom)(*)f(Θ), with f(Θ) = (1-cosΘ)(2)(2+cosΘ)/4. This prediction is tested through simulations for the simple cubic lattice gas model with nearest-nei…

Condensed matter physicsChemistryEvaporationNucleationThermodynamicsCondensed Matter PhysicsPhysics::Fluid DynamicsContact angleWetting transitionPhenomenological modelPeriodic boundary conditionsGeneral Materials ScienceIsing modelWettingJournal of Physics: Condensed Matter
researchProduct

Energy localization in a nonlinear discrete system

1996

International audience; We show that, in the weak amplitude and slow time limits, the discrete equations describing the dynamics of a one-dimensional lattice can be reduced to a modified Ablowitz-Ladik equation. The stability of a continuous wave solution is then investigated without and with periodic boundary conditions; Energy localization via modulational instability is predicted. Our numerical simulations, performed on a cyclic system of six oscillators, agree with our theoretical predictions.

Discrete systemNonlinear systemDiscrete equationModulational instabilityAmplitudeLattice (order)Mathematical analysisContinuous wavePeriodic boundary conditions[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]Mathematics
researchProduct

Method of Lines and Finite Difference Schemes with Exact Spectrum for Solving Some Linear Problems of Mathematical Physics

2013

In this paper linear initial-boundary-value problems of mathematical physics with different type boundary conditions BCs and periodic boundary conditions PBCs are studied. The finite difference scheme FDS and the finite difference scheme with exact spectrum FDSES are used for the space discretization. The solution in the time is obtained analytically and numerically, using the method of lines and continuous and discrete Fourier methods.

DiscretizationMathematical analysisMethod of linesSpectrum (functional analysis)Finite difference methodFinite differencePeriodic boundary conditionsFinite difference coefficientBoundary value problemMathematicsMathematical physics
researchProduct

Short chaotic strings and their behaviour in the scaling region

2008

Coupled map lattices are a paradigm of higher-dimensional dynamical systems exhibiting spatio-temporal chaos. A special case of non-hyperbolic maps are one-dimensional map lattices of coupled Chebyshev maps with periodic boundary conditions, called chaotic strings. In this short note we show that the fine structure of the self energy of this chaotic string in the scaling region (i.e. for very small coupling) is retained if we reduce the length of the string to three lattice points.

Dynamical systems theoryGeneral MathematicsApplied MathematicsChaoticFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsTopologyNonlinear Sciences - Chaotic DynamicsChebyshev filterString (physics)Coupling (physics)Periodic boundary conditionsStatistical physicsChaotic Dynamics (nlin.CD)ScalingMathematicsCoupled map lattice
researchProduct